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ON THE ASYWTOTIC SOLUTION OF MIXED THREE-DI~NSIONA~ PROBLEMS FOR 
D~BLE-DYER ANIS~TR~PIC PLATES* 

L.A. AGALOVYAN and R.C. GEVORKYAN 

An asymptotic method /l/ is used to solve mixed three-dimensional problems 
for double-layer anisotropic thermoelastic plates, and the possibility 
of using the results obtained in computations of elastic bases and 
foundations in the model of a compressible layer is examined. Additional 
hypotheses on the nature of the displacement field distribution are not 
required here, as was done earlier /2/ in the analysis of plates and 
shells on an elastic basis in the model of a compressible layer. Exact 
solutions of the internal problem are obtained in a number of cases. 
This approach can be extended to the case of multilayer plates and shells. 

1. The following problem is posed: it is required to find the solution of the equations 
of the spatial problem of the theory of elasticity of an anisotropic layer in a domain 
occupied by a double-layer plate 8 = {a, 8, Y:a, pE&---h,,<y<h,}, where 52, is the separation 
plane, and k,,k, are the layer thicknesses (Fig.1). Specified volume forces Fa")(a,@, ~)(a, 

8, Y) and temperature effects, whose influence is taken into account by the theory of 
temperature stresses using the Duhamel-Neumann law /3/, act on the plate. The quantities 
referring to the upper layer are denoted by the superscript (I), and to the lower layer by 
the superscript (2). On the facial surface of the lower layer y=- h, values of the 
displacements are given, in particular, it is rigidly clamped (the displacement vector on the 
surface equals zero) 

L!~'(-?&);=_W-(a,fi), Uk"'(--hz)=v_(a,Bh u:"'(--hz)=w+(a,fl) (1.1) 

while on the plane y = h, one of the combinations of the following conditions is given 

CT;; (hl) = E-%&[(v, p), u’B’: (hi) = E-‘U+gy (a$), uy @I):= W+ (a,’ p) (1.4) 

u$(h,)= u’(a, fJ), zq(k1)= V+(a, 6). u:':(k1)= E-%J;y(a, p) (1.5) 

The anisotroov is common and is characterised by 21 elastic __ 

Fig.1 
constants for each layer. The solution found should also satisfy 
conditions of the lateral surface&which for the moment are considered 

to be arbitrary. It will be seen from the subsequent exposition that these conditions do 
not influence the internal state of stress in the problems under consideration; they are due 
to the boundary layer. 

In particular, problem (1.11, (1.3) models the elastic basis-foundation in the model of 
a compressible layer /2, 4/. 

we introduce the dimensionless variables g = a/a, n= o/a, 5 = y/h% = &-ryia (E = h&z, h, + 
ha<a: (if k,>k2 it is best to introduce 5 = y/k,, E = h,/a) and the dimensionless dis- 
placements u'i) = u,(“/a, u(i) =: uR'i)/a, ~(0 = b,Ci)/,, where a is the characteristic dimension of the 
plate, i = 1 for the upper layer and i = 2 for the lower. The system of equations of the 
spatial problem /3, 5/ (the equilibrium equations, the elasticity relations and the displacement 
deformation) takes the form 

iW 
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Here A, B are coefficients of the first quadratic form, km, ke are curvatures, ajk 

are elastic compliance coefficients, Ujk are the coefficients of thermal expansion, and 
Cl(*) = T(i) - T,#O is the temperature increment. Variability over the coordinate lines of the 
middle surface can also be taken into account in (1.6) in a known manner. System (1.6) is 
perturbed singularly by the small parameter E. Its solution is comprised of the solution of 
the internal problem and the boundary layer /l, 6/. 

Wewillseekthe solutionoftheinternalproblem,or the penetrating solution in the form 

QW = 2sXQ+dQ:i).s(E, 1, ,), i T 1.2 (1.7) 

where Q(i) is any of the quantities desired, and the summation is over s between zero and the 
number of the approximation N. To determine the unknown coefficients QW 8 we obtain a non- 
contradictory system after substituting (1.7) into (1.6), if /7/ 

xc = -1 for the stresses xq =O for the displacements (1.8) 

In principle, the asymptotic form of the stresses and displacements corresponding to 
conditions (1.8) differs from the asymptotic form of the same quantities in the classical 
theory of both isotropic and anisotropic plates /l, 8/, i.e., when values of the stress are 
given on the facial surfaces. In the problems under consideration here, the stresses generally 
turn out to be equally correct. Let 

F$ = Ze-~+sFa1(5, n, 5) (a, p, y), e(i) = w+se:i) g, 1, 5) (1.9) 

Substituting (1.7) into (1.6) and taking account of (1.8) and (1.91, we obtain the system 
of governing equations in Q(i),* by the usual procedure. This system can be integrated with 
respect to the variable 5. Then by satisfying conditions (1.1) and the elastic contact 
conditions for ,y =O 

(u, 0, w; 53, 43, 33; 54, 44, 34; 55, 45, 35), i = 1, 2 

Here 

(1.1-2) 

the approximations 0,:') 
The quantities Q:'"(E,q, fJ are known functions if the desired functions are known for 

1.. .I (s - 1). The following recursion formulas are obtained to evaluate 
them: 
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R('J*a 1 &I,+1 
3 

_ 1 auc'J+r I A ag 
B arl 

a(k,u('J.'-' + ,QOJ~'-r) - 

a($JuC&~ _ a$‘@;* _ &Jue$ _ (&Jg;’ 

It was assumed that the contribution of the volume forces and temperature effects is 

commensurate with the contribution of the surface forces and displacements when obtaining the 

relationships presented above. This will occur under the condition of validity of the 

asymptotic form (l-9), i.e., the volume forces should have sufficiently high intensity, other- 
wise the corresponding components will appear in the equations for the subsequent approximations 

The large parameter sa is inserted in the boundary conditions (1.3)-(1.5) for the same 
reason, to conserve the commensurability of the stresses caused by given displacements and 

surface forces. 

The solution (l-7), 
(E,sq). 

(1.11) contains the still unknown functions u$(f, q), c&(&q),&& 

which are determined from conditions for y = h,(c = I&). By satisfying conditions 

(l-2), for instance, we obtain 

and 

@J 0’ 
&z, = (- cauv, + cm4 $’ + cr&‘) A;’ (a, B; 4,5) 

us = (c&&J + c&q) - crssV:“) A;;’ 

Ai = D~JCII~ + DUCU~ - DSSCM, D,% = 5~4~? + A$!, 5o=kilkz 

c,tl= D&l - DijDjl, j, k, I= 3, 4,5 
vg) = U+(8) - 1(-(8’ + UT’** (5 = - i) - u(:)” (so) (a, B, y; u, v, w) 

(1.14) 

c&C u&.:“’ - &$ (CO) (a, p), cl& = u;y”’ - u$j; (so) (1.15) 

corresponds to conditions (1.31, where a~~'=~& (j=a,fi,v), u$'=u$:"'=u~'=~ for s>O. 
In the case of boundary conditions (1.41, we obtain 

and for conditions (1.5) we have 

(1.16) 

a&, = (D,,U @J - DsrV "J)/( D,fib6 - D&w) (1.17) 

u&= (D&*J - D,,U(“J)/(D,,D,, - DlsDsr), Use= a$‘- ‘J% (60) 

UC”) = u+(*’ - &‘J + ,f’*’ (5 = _ 1) _ I@” (50) - De&& (u. u) 

Therefore, the solution of the internal problem is completely defined. As follows from 

(1.9), (l-111, (1.14)-(1.171, it contains no additional arbitrary constants. This class of 

problems is thus quite different from problems of the classical theory of plates and shells 
(the solution of the internal problem corresponding to the classical theory /l, S/ contains 

constants that should be determined from conditions on the lateral surface). Since the 

solution of the internal problem contains no greater arbitrariness, and the system of 

boundary functions possesses the necessary completeness /9, lo/, then the conditions on the 

lateral surface in the problems considered here will generate only solutions of boundary- 

layer type, i.e., the boundary layer eliminates the residual on the lateral surface. 
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2. An exact solution of the internal problem can be obtained in a number of cases. For 

instance, when the anisotropy is rectilinear and the surface and volume forces of the 

temperature vary polynomially, the appropriate iteration process is truncated and a closed 

solution is obtained. 
Let us examine some special cases when the plane y = -he is rigidly clamped: &(--h,)= 

%((-h~) = ny (--h,)= 0 and the following conditions are satisfied simultaneously. 
lo. There are no volume forces and temperature changes, while a load of constant intensity 

acts on the face plane y = h, 

U.zq (h)=u&, a6v(hl)= u&, aw(hl)=u+,; u~=const. 

It follows from (1.9), (1.111, (1.15) 

Z". A normal load, linearly dependent on the coordinates a, p 

Uav (h,) = Uev (4) = 0, Uw (hr) = bra + b,B 

acts on an orthotropic plate. The first approximations of the iteration process are different 

from zero, and the following solution corresponds to them 

ug = A$ (bla + b&). u@ = A$’ (bla + 4/3), us = 0 (2.2) 

Ug=bjU+&p, @=&(hiAg-?A$), &=&(hiA$)--_A~) 

~2’ = &hiA$’ (&AZ’ + yA2) + G bi (gA$’ A?2 _ JS’A~A$) - 

+ bl&?A$ + 2yhzA$ + ?‘A$) (a, fi; b, 4; 5.4; 13,23) 

4’ = (hzAg’ + ?A$‘) (bla + b$), i = 1,2 

3O. A constant normal displacement 

bay (hi) = IJ~, (hi) = 0, U, (ha) = w+ = mnst 

is communicated tothesurface y = h,. 
The iteration is cut off in the initial approximation, which yields 

a%= &'al~+, ,$;= &&+, U$= _4!‘,)alw+ (2.3) 
&’ - 0 & = 0, (i) my-- 9 uW = alw+; (1) al = &A, + hz As )- W 1 

&’ = (yA$,) + &AC) aiw’ (a, fi; 5,4), I#:’ = (yA$’ + &A$‘) alw+ 

do. We Will Calculate the temperature stresses in a double-layer orthotropic plate when 
the temperature change in the first layer is W), and in the second is fW, where W,-con&, 

and 0(s) =: const, there are no volume and surface forces Fa = Fp = Fv =O; u,, = US, = uw = 0 
for y = h,, and u, = % = z+ = 0 for y = -h,. Using (1.71, (1.9), (l-11)-(1.13) and (1.15) 
we obtain 

(2.4) 

If the temperature varies linearly over the layer thicknesses, Wi) = b,T+d. there results 

from these same formulas 

Ug= B$" (bly + d), Ug = Bc’(biy + d) (2.5) 
0% = _ & (a$)-1 (b,y + d), ~$4 = ~$4 = & = 0 

u$i’ = aithz (d - + b&) + a.$ (& b# f yd) (a, fi; 13,23) 

50 . Let the facial surface of the plate be rigidly clamped: & = % = u, = 0 for v =h,; 

--h,, there are no volume and surface forces , and the temperature varies in an arbitrary 
manner over the thickness (Fig.2). Taking account of (1.9), (l.ll)-(1.131, we obtain for the 



expansion coefficients (1.7) 

(2.6) 

~~’ ’ = hz (hi A~’ + hzA~‘))-’ (B6”’ ~’ Ed” d5 _ By’ “s” Ed” d5) 
0 0 

&” = Agq$’ + Bpep (a, p; 1,2), g&G = _ &’ (&l @” 

-1 
WW.~ = (GAS + Ag’) p** (0 yy _ B,‘2’ 1 er’dc + Bc’ ‘e(‘) s 8 & 

0 0 

In particular, when @',=:const, a solution of the problem is 

(0 _ 
oC&CG- - A;~‘(B:“ewh, + Bpewh,) (hlA$ + hzAg))-’ + Br”B(‘) 

&, = - (&eWhi + &)e(2)hz) &A$ + &Ag))-a 
0) U, = - (yA:i’ + hzA$) (a!j!ew21 +- a$e@&) (hlAg’ + hzA&l + 

&)eWzz + a$e(*)y (a, /3; 13,23; B;, Bz; 5,4) 

&i = _ a:i) (Q)-1 em, cg = - ( Bpewtl + Bpewtz) (&A$) + hzAg’)-’ 

4) = - (y A$’ + &A$‘) (Bpe(‘)hl $ Bpe@)&) (hl&) + hz&')-i + 

BpJ(2)~2 + B(')fjWy 
3 

(2.7) 

It is possible to write down solutions of problems corresponding to load and temperature 

changes using high-degree polynomials. For complex loads they can be approximated by a 
polynomial, then the appropriate exact solution can be written down. 

3. The asymptotic method can be used to compute elastic bases and foundations. Anumber 

of models of an elastic base exists /2, 4, 11/. These models can be classified as follows: 

1) the Winkler-Zimmermann-Fusse model, or the model of the bed coefficient, 2) the model of 

a base with two elastic characteristics, or the model of a single-layer base (V.Z. Vlasov, 

P.L. Pasternak, M.M. Filonenko-Borodich), 3) the model of an elastic half-space (half-plane) 

with constant or variable elastic modulus over the depth, 4) the model of a compressible layer. 

The elastic modulus is considered constant or variable over the layer thickness (V.Z. Vlasov- 

N.N., Leont'ev, G.K. Klein, K.E. Egorov, et al.). 

Fig.2 

Compared with the Fusse-Winkler-Zimmermann model of an elastic base, the model of a 

compressible layer has the advantage that it enables the state of stress and strain of the 

basis itself to be assessed also. In the general case, the corresponding three-dimensional 

problem of thermoelasticity must be solved by this model in the general case. The model is 

described mathematically by the problem (l.l), (1.3). Having the solution of the problem, a 

judgment can be made on the validity of the kinematic hypotheses taken in /2/, and the 

validity of the Fusse-Winkler hypothesis can also be verified. 
It follows from (2.1) that if the anisotropy is arbitrary, then evenunder a normal uniform 

load all the displacements are equally correct. It is natural that they remain the same even 

for tangential loads. If the base material is isotropic or orthotropic, then the normal 

displacement is the main one under the effect of a normal load, and the tangential displacements 

either equal zero as in the case of a uniform load, or are an order less as compared with a 

normal displacement under a non-uniform load. This can be seen by going over to dimensionless 

variables in (2.1), (2.2). It hence follows that the kinematic representations taken in /2/ 
hold for a uniform laod and are approximate, but sufficiently exact, for practical applications 

for non-uniform normal loads. These representations cannot be extended to the case of a 

foundation with arbitrary anisotropy. 
From (2.1) we write down the values of the stresses and displacements for points Of the 

contact surface (we denote them by the superscript c) corresponding to a normal load 

a& = b&=0, S"w = a& (3.1) 
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It follows from (3.1) that under the effect of a constant normal load the contact surface 
points always have tangential displacements proprotional to the load, where the proportionality 
factors are different for the different displacement components. It hence follows that when 
the anisotropy of the base is arbitrary, the Fusse-Winkler model is inapplicable. If 
orthotropy holds and the principal directions agree with the coordinates, then A,J@)=A,8@)=0 

and there is a relationship u~~=_&(~)&~~c between the displacement of the point of contact 
and the reactive pressure. or 

i.e., the Winkler-Fusse hypothesis is satisfied exactly , and k= i/(A~(e)k,) is the bed coefficient. 
For the isotropic case, calculating the value of Am(*) from (1.121, we obtain 

* = 
(’ - V(a)) E(,) 

(1 + yz)) (* - 234 h (3.3) 

which agrees with the known bed coefficient proposed by N.M. Gersevanov (/4/, p.56). It 
follows from (2.3) that this same bed coefficient is obtained when the facial surface y= h 
receives a normal displacement, in the case of a temperature effect it follows from (2.4)-(2.7) 
that the above-mentioned proportionality does not exist. 

If the normal load is variable, then the tangential displacements of points of the contact 
surface become different from zero in both the orthotropic and isotropic cases, and additional 
components tothe Winkler ones appear in the expression for the normal displacement. However, 
it can be seen (see (2.2)) that these components are of an order of magnitude less than the 
Winkler ones. Consequently, although the Winkler-Fusse hypothesis is not satified exactly 
mathematically because of the variability of the external load, it is acceptable within known 
limits. 

We also note that when we speak of the applicability of any model, the above is valid for 
the internal problem, i.e., at a distance from the lateral surface equal to the boundary- 
layer damping zone (edge effects), If other stress or displacement values than those that 
result from the solution of the internal problem are given on the lateral surface of the plate, 
then a boundary layer occurs where there is no proportional dependence between the normal 
displacement and the reactive pressure. In the case of one compressible layer, the plane 
boundary layer is studied in /9/ and the question of its interaction with the solution of the 
internal problem is discussed. The fundamental relationships of the spatial boundary layer 
are obtained in /lo/. It is shown that the boundary layer damps out exponentially, while the 
value of the exponent depends on the elastic properties of the material. The boundary layer 
is constructed by the same method for laminar plates. We say that probems of laminar plates 
and shells with an arbitrary number of layers can be solved by the same asymptotic method 
even when the elastic moduli are variable over the thickness of each layer. 

Contact problems- of anisotropic shells and plates can be solved by using the solution of 
the internal problem and the boundary layers of the mixed problems mentioned. 

1. 
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STABILITY OF CIRCULAR PLATES FROM AGEING VISCOELASTIC MATERIAL* 

A.D. DROZDOV AND D.M. ZHUKHOVITSKII 

Stability conditions are obtained for circular plates of an inhomogeneously- 
ageing viscoelastic material for an arbitrary creep kernel and different 
methods of plate support. Stability in an infinite time interval 
corresponds to determination of the Lyapunov stability, and in a finite 
interval, Chetayev stability. 

1. Formulation of the problem. Consider the axisymmetric deformation of a circular 
plate of constant thickness h and radius R. We introduce a cylindrical rcpz coordinate 
system whose origin is at the centre of the plate middle plane in the undeformed state, while 
the z-axis is perpendicular to this plane. At a time t= 0 an external load is applied to 
the plate. We denote the age of the plate material at the point r at the time of external 
load application by p(r). The function p(r) is piecewise-continuous and bounded. 

The stress qri and strain eii tensor components (i, j = r,(p,z) are connected by the 
relationships 

e,, = (1 + Y) (I + L) Q/E, E = (1-2~) a/E 

s*) = E (1 + v)-’ (I - N) eij, u = E (1-2~)~' E 

a=(% + %, + %)/3, c= (+r + %pP + %)/3 
eij Z Qj - e&j, Sij = Uij - U6ij 

(1.1) 

Is = 5 (t), Lz=SZ(t+p,r+p)+(r)dr, 
0 

ivz&(t+p,r+p)r(r)dr 

II 

Here E is the constant modulus of elastic instantaneous deformation, v is the constant 
Poisson's ratio, hij are Kronecker deltas, I is the unit operator, L is the creep operator, 
N is the relaxation operator, and l(t,-c) and n(t, 2) are the creep and relaxation kernels. 

The external load applied to the plate consists of a transverse distributed load of 
intensity q(r)and compressive forces of constant magnitude p. 

Let w({,r) denote the plate deflection at the point r at the time t, W. the maximum 
allowable value of the deflection, and To the first time the deflection reaches the value mO. 

Definition 1. A plate is called Lyapunov stable in an infinite time interval if for any 
a>0 there exists a S(s)>0 such that the estimate 1 w(t,r)l<e (t>O, re [O, RI) follows 
from the inequality 1 p(r)1 < 6 

Definition 2. A plate is called stable in an interval [O, T] if T< T,. 
The aim of this paper is to obtain the conditions for the magnitudes of the compressive 

forces p for which the plate is stable according to Defintions 1 and 2. 

2. Governing equations. Suppose an axisymmetric generalized plane state of stress 
exists in the plate. Then a, = 0 and the quantities o,,(i = r, cp,z) can be neglected. We 
consequently obtain from (1.1) 

UT,, = E (1 - v2)-l [(i -v) (Z-N) e,, + v (I - K) (err + e,,)l 

U cpT = E (i - v’)-l [(I - V) (Z - N)E,, + v (1 - K) (Err + +,,)I 

K = N {I - (1 + v) (1 - 2~) (3v - 3vz)-' [I + (1 + v) x (3-3v)-1 L]-l} 

(2.1) 
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